If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+32t-16t^2=0
a = -16; b = 32; c = +5;
Δ = b2-4ac
Δ = 322-4·(-16)·5
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{21}}{2*-16}=\frac{-32-8\sqrt{21}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{21}}{2*-16}=\frac{-32+8\sqrt{21}}{-32} $
| i/8=5 | | x=15x+24 | | x=20x-16 | | 5a+5a+5a+4a+3a+2a=720 | | 6x-12=x-47 | | c-66=54 | | 5a+5a+5a+4a+4a+2a=720 | | (x+5)2^=100 | | 0=6x2+54x+120 | | (x+5)2=100 | | (2x-9)+(6x+10)=8x+1 | | 5x=17=-x+7 | | 4.9g+8=2.9g+12 | | 8/11(n-10)=14 | | 2(3x+4)=5x+3x–4 | | -10x-25=40 | | x+19+5=40 | | 82+x+54+x+60=180 | | –9+5m=6 | | 11(x+2x)=13 | | 5v+3v=65 | | X+(-6y)=-30 | | 18=x12 | | 6n+9=-3n-26n | | 6(7+2x)=3(5x=1) | | 4n+21=33 | | –8.48−8.1w=–9.44+7.68−7.4w | | A=3x+8 | | 5g+12=52 | | 14.95x−5.95= | | 25=x40 | | 0.5^x=0.38 |